
Matej Hočevar

From Web to Mobile: 
Exploring New Horizons



About Me

● Full-stack developer by 💙
● Lead Software Engineer @ tretton37
● Cross-platform mobile developer



Swedish technology 
consultancy with 
knowledge in our DNA
With our unique knowledge sharing and 
empathic approach to mentorship, we make 
sure our clients and our employees grow 
beyond their aspirations.



A startup company with three teams working 
together on a mobile banking app in 2018.

How I started



The Challenge

14
Days

Rapidly prototype 
MVP with a team of 
three web developers 
under tight deadlines.

3
Frameworks

Evaluate technical 
capabilities using most 
popular 
cross-platform 
frameworks.

1
Codebase

Single codebase for 
iOS & Android 
platform with minimal 
platform-specific 
code.

4
Screens

Prioritize 
implementation of 
most business critical 
screens. 

0
Differences

Ensure seamless user 
experience 
indistinguishable from 
existing native apps.



The Result?



The Result?

Framework NativeScript React Native Flutter

Custom layout ★★☆☆☆ ★★☆☆☆ ★★★★☆

Plugins ★★★☆☆ ★★★☆☆ ★★☆☆☆

Performance ★★☆☆☆ ★★☆☆☆ ★★☆☆☆

Documentation 
& Community

★☆☆☆☆ ★★★☆☆ ★★☆☆☆

Developer
Experience

★★☆☆☆ ★★☆☆☆ ★★★☆☆



Takeaways?





● Native
○ iOS
○ Android

● Cross-Platform frameworks
○ React Native
○ Flutter
○ and many others

● PWA

Many ways to build an app



● New programming language
● Great performance
● Plenty of native API
● Built-in support for Simulators, Emulators
● Debugging resources

When to choose it:

● Extensive integration with native APIs
● Performance is crucial
● App size matters
● Existing team of app developers
● Comfortable budget

Native App Development



● Language: Swift
● UI framework: SwiftUI 
● Backed by: Apple

● Xcode with macOS required
● Native APIs not open-sourced

iOS with Swift



● Language: Kotlin
● UI framework: Jetpack Compose
● Backed by: Google, Jetbrains

● Compatibility with Java
● Tooling support

Android with Kotlin



● Single codebase
● Quicker development process (50-80 %)
● Reusable code (> 90 %)
● Unified look & feel
● Reduce development cost

Cross-Platform Development



● Everything is a component
● JavaScript is compiled to native code

● Platform-specific look & feel
● Hot reload, Live Reload
● Supports iOS, Android, Desktop*, Web*

React Native with JavaScript

Web Browser React Native JSX Native Android Native iOS

<div> <View> android.View UIView

<input> <TextInput> EditText UITextField

… … … …

* experimental



Pros:

● Large community
● Leverage web skills
● Expo platform wrapper

(UI components, SDK, Client, OTA updates)

Cons:

● Dependency on 3rd-party libraries
● Bridge might be performance bottleneck

React Native with JavaScript



When to choose it:

● Rapid development & MVP delivery
● Team with web background
● Existing React.js codebase
● Frequent updates (code push)
● Limited budget

React Native with JavaScript



● Everything is a widget
● Own rendering engine 
● Consistent UI across platforms
● Supports iOS, Android, Web, Desktop (Windows, macOS, 

Linux) & embedded devices

Flutter with Dart



Pros:

● Smaller but strong community
● High-performance animations and custom UI designs
● Dart (Null-safety)

Cons:

● New language: Dart
● Fewer developers
● Material UI is the dominant design system
● No out-of-the-box OTA updates

Flutter with Dart



When to choose it:

● Rapid development & MVP delivery
● Highly customized UI/UX
● Consistent UI across platforms
● Multiple platforms (Mobile + Web, Desktop, embedded)
● Limited budget

Flutter with Dart



● .NET MAUI
● Kotlin Multiplatform
● Ionic
● NativeScript
● Apache Cordova (PhoneGap)

Other cross-platform solutions



● Online video courses
● Official documentation
● ChatGPT, Copilot, etc.
● Code repositories

How to start?





Matej Hočevar
linkedin.com/in/matej-hocevar

Thank you


